DataFrame NaN 데이터 처리
학습목표
- NaN 처리 방법 이해하기
import pandas as pd
# data 출처: https://www.kaggle.com/hesh97/titanicdataset-traincsv/data
train_data = pd.read_csv('./train.csv')
train_data.head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
NaN 값 확인
- info함수를 통하여 개수 확인
- isna함수를 통해 boolean 타입으로 확인
train_data.info() #Cabin 204, Age 714 을 보아 데이터 손실이 있다는 것을 알수 있다
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
train_data.isna() # true 인 경우에 NaN , 즉 데이터가 없다는 의미
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | False | False | False | False | False | False | False | False | False | False | True | False |
1 | False | False | False | False | False | False | False | False | False | False | False | False |
2 | False | False | False | False | False | False | False | False | False | False | True | False |
3 | False | False | False | False | False | False | False | False | False | False | False | False |
4 | False | False | False | False | False | False | False | False | False | False | True | False |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | False | False | False | False | False | False | False | False | False | False | True | False |
887 | False | False | False | False | False | False | False | False | False | False | False | False |
888 | False | False | False | False | False | True | False | False | False | False | True | False |
889 | False | False | False | False | False | False | False | False | False | False | False | False |
890 | False | False | False | False | False | False | False | False | False | False | True | False |
891 rows × 12 columns
train_data['Age'].isna()
0 False
1 False
2 False
3 False
4 False
...
886 False
887 False
888 True
889 False
890 False
Name: Age, Length: 891, dtype: bool
NaN 처리 방법
- 데이터에서 삭제
- dropna 함수
- 다른 값으로 치환
- fillna 함수
- NaN 데이터 삭제하기
train_data.dropna()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
6 | 7 | 0 | 1 | McCarthy, Mr. Timothy J | male | 54.0 | 0 | 0 | 17463 | 51.8625 | E46 | S |
10 | 11 | 1 | 3 | Sandstrom, Miss. Marguerite Rut | female | 4.0 | 1 | 1 | PP 9549 | 16.7000 | G6 | S |
11 | 12 | 1 | 1 | Bonnell, Miss. Elizabeth | female | 58.0 | 0 | 0 | 113783 | 26.5500 | C103 | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
871 | 872 | 1 | 1 | Beckwith, Mrs. Richard Leonard (Sallie Monypeny) | female | 47.0 | 1 | 1 | 11751 | 52.5542 | D35 | S |
872 | 873 | 0 | 1 | Carlsson, Mr. Frans Olof | male | 33.0 | 0 | 0 | 695 | 5.0000 | B51 B53 B55 | S |
879 | 880 | 1 | 1 | Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) | female | 56.0 | 0 | 1 | 11767 | 83.1583 | C50 | C |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C |
183 rows × 12 columns
train_data.dropna(subset=['Age', 'Cabin']) #Age , Cabin 컬럼 에서 True 값이 있는 인덱스 행열 제거 한다
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
6 | 7 | 0 | 1 | McCarthy, Mr. Timothy J | male | 54.0 | 0 | 0 | 17463 | 51.8625 | E46 | S |
10 | 11 | 1 | 3 | Sandstrom, Miss. Marguerite Rut | female | 4.0 | 1 | 1 | PP 9549 | 16.7000 | G6 | S |
11 | 12 | 1 | 1 | Bonnell, Miss. Elizabeth | female | 58.0 | 0 | 0 | 113783 | 26.5500 | C103 | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
871 | 872 | 1 | 1 | Beckwith, Mrs. Richard Leonard (Sallie Monypeny) | female | 47.0 | 1 | 1 | 11751 | 52.5542 | D35 | S |
872 | 873 | 0 | 1 | Carlsson, Mr. Frans Olof | male | 33.0 | 0 | 0 | 695 | 5.0000 | B51 B53 B55 | S |
879 | 880 | 1 | 1 | Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) | female | 56.0 | 0 | 1 | 11767 | 83.1583 | C50 | C |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C |
185 rows × 12 columns
train_data.dropna(axis=1) # axis = 0 은 row 제거 , axis =1 은 columns 제거
PassengerId | Survived | Pclass | Name | Sex | SibSp | Parch | Ticket | Fare | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 1 | 0 | A/5 21171 | 7.2500 |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 1 | 0 | PC 17599 | 71.2833 |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 0 | 0 | STON/O2. 3101282 | 7.9250 |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 1 | 0 | 113803 | 53.1000 |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 0 | 0 | 373450 | 8.0500 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 0 | 0 | 211536 | 13.0000 |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 0 | 0 | 112053 | 30.0000 |
888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | 1 | 2 | W./C. 6607 | 23.4500 |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 0 | 0 | 111369 | 30.0000 |
890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 0 | 0 | 370376 | 7.7500 |
891 rows × 9 columns
- NaN 값 대체하기
- 평균으로 대체하기
- 생존자/사망자 별 평균으로 대체하기
train_data['Age'].mean()
29.69911764705882
train_data['Age'].fillna(train_data['Age'].mean()) # Age 컬럼 888번째 NaN 값을 전체 평균 값으로 대체한다(29.69911764705882)
0 22.000000
1 38.000000
2 26.000000
3 35.000000
4 35.000000
...
886 27.000000
887 19.000000
888 29.699118
889 26.000000
890 32.000000
Name: Age, Length: 891, dtype: float64
train_data['Survived'] == 1 # 생존자 확인
0 False
1 True
2 True
3 True
4 False
...
886 False
887 True
888 False
889 True
890 False
Name: Survived, Length: 891, dtype: bool
train_data[train_data['Survived'] == 1]['Age'] # 생존자 나이 추출
1 38.0
2 26.0
3 35.0
8 27.0
9 14.0
...
875 15.0
879 56.0
880 25.0
887 19.0
889 26.0
Name: Age, Length: 342, dtype: float64
# 생존자 나이 평균
mean1 = train_data[train_data['Survived'] == 1]['Age'].mean()
# 사망자 나이 평균
mean0 = train_data[train_data['Survived'] == 0]['Age'].mean()
print(mean1, mean0)
28.343689655172415 30.62617924528302
train_data[train_data['Survived'] == 1]['Age'].fillna(mean1) # 생존자 나이 중에 NaN 값이 28.343689655172415으로 대체됨
train_data[train_data['Survived'] == 0]['Age'].fillna(mean0) # 사망자 나이 중에 NaN 값이 30.62617924528302 으로 대체됨
0 22.000000
4 35.000000
5 30.626179
6 54.000000
7 2.000000
...
884 25.000000
885 39.000000
886 27.000000
888 30.626179
890 32.000000
Name: Age, Length: 549, dtype: float64
#실제 데이터에 채우고 싶다면 loc 이용하기
train_data.loc[train_data['Survived'] == 1, 'Age'] = train_data[train_data['Survived'] == 1]['Age'].fillna(mean1)
train_data.loc[train_data['Survived'] == 0, 'Age'] = train_data[train_data['Survived'] == 0]['Age'].fillna(mean0)
train_data
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.000000 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.000000 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.000000 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.000000 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.000000 | 0 | 0 | 373450 | 8.0500 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.000000 | 0 | 0 | 211536 | 13.0000 | NaN | S |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.000000 | 0 | 0 | 112053 | 30.0000 | B42 | S |
888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | 30.626179 | 1 | 2 | W./C. 6607 | 23.4500 | NaN | S |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.000000 | 0 | 0 | 111369 | 30.0000 | C148 | C |
890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.000000 | 0 | 0 | 370376 | 7.7500 | NaN | Q |
891 rows × 12 columns
train_data[train_data['Age'] == 28.343689655172415] #생존자만 보기 / NaN 값이 바뀐 것을 확인 할수 있다
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
17 | 18 | 1 | 2 | Williams, Mr. Charles Eugene | male | 28.34369 | 0 | 0 | 244373 | 13.0000 | NaN | S |
19 | 20 | 1 | 3 | Masselmani, Mrs. Fatima | female | 28.34369 | 0 | 0 | 2649 | 7.2250 | NaN | C |
28 | 29 | 1 | 3 | O'Dwyer, Miss. Ellen "Nellie" | female | 28.34369 | 0 | 0 | 330959 | 7.8792 | NaN | Q |
31 | 32 | 1 | 1 | Spencer, Mrs. William Augustus (Marie Eugenie) | female | 28.34369 | 1 | 0 | PC 17569 | 146.5208 | B78 | C |
32 | 33 | 1 | 3 | Glynn, Miss. Mary Agatha | female | 28.34369 | 0 | 0 | 335677 | 7.7500 | NaN | Q |
36 | 37 | 1 | 3 | Mamee, Mr. Hanna | male | 28.34369 | 0 | 0 | 2677 | 7.2292 | NaN | C |
47 | 48 | 1 | 3 | O'Driscoll, Miss. Bridget | female | 28.34369 | 0 | 0 | 14311 | 7.7500 | NaN | Q |
55 | 56 | 1 | 1 | Woolner, Mr. Hugh | male | 28.34369 | 0 | 0 | 19947 | 35.5000 | C52 | S |
65 | 66 | 1 | 3 | Moubarek, Master. Gerios | male | 28.34369 | 1 | 1 | 2661 | 15.2458 | NaN | C |
82 | 83 | 1 | 3 | McDermott, Miss. Brigdet Delia | female | 28.34369 | 0 | 0 | 330932 | 7.7875 | NaN | Q |
107 | 108 | 1 | 3 | Moss, Mr. Albert Johan | male | 28.34369 | 0 | 0 | 312991 | 7.7750 | NaN | S |
109 | 110 | 1 | 3 | Moran, Miss. Bertha | female | 28.34369 | 1 | 0 | 371110 | 24.1500 | NaN | Q |
128 | 129 | 1 | 3 | Peter, Miss. Anna | female | 28.34369 | 1 | 1 | 2668 | 22.3583 | F E69 | C |
166 | 167 | 1 | 1 | Chibnall, Mrs. (Edith Martha Bowerman) | female | 28.34369 | 0 | 1 | 113505 | 55.0000 | E33 | S |
186 | 187 | 1 | 3 | O'Brien, Mrs. Thomas (Johanna "Hannah" Godfrey) | female | 28.34369 | 1 | 0 | 370365 | 15.5000 | NaN | Q |
198 | 199 | 1 | 3 | Madigan, Miss. Margaret "Maggie" | female | 28.34369 | 0 | 0 | 370370 | 7.7500 | NaN | Q |
241 | 242 | 1 | 3 | Murphy, Miss. Katherine "Kate" | female | 28.34369 | 1 | 0 | 367230 | 15.5000 | NaN | Q |
256 | 257 | 1 | 1 | Thorne, Mrs. Gertrude Maybelle | female | 28.34369 | 0 | 0 | PC 17585 | 79.2000 | NaN | C |
274 | 275 | 1 | 3 | Healy, Miss. Hanora "Nora" | female | 28.34369 | 0 | 0 | 370375 | 7.7500 | NaN | Q |
298 | 299 | 1 | 1 | Saalfeld, Mr. Adolphe | male | 28.34369 | 0 | 0 | 19988 | 30.5000 | C106 | S |
300 | 301 | 1 | 3 | Kelly, Miss. Anna Katherine "Annie Kate" | female | 28.34369 | 0 | 0 | 9234 | 7.7500 | NaN | Q |
301 | 302 | 1 | 3 | McCoy, Mr. Bernard | male | 28.34369 | 2 | 0 | 367226 | 23.2500 | NaN | Q |
303 | 304 | 1 | 2 | Keane, Miss. Nora A | female | 28.34369 | 0 | 0 | 226593 | 12.3500 | E101 | Q |
306 | 307 | 1 | 1 | Fleming, Miss. Margaret | female | 28.34369 | 0 | 0 | 17421 | 110.8833 | NaN | C |
330 | 331 | 1 | 3 | McCoy, Miss. Agnes | female | 28.34369 | 2 | 0 | 367226 | 23.2500 | NaN | Q |
334 | 335 | 1 | 1 | Frauenthal, Mrs. Henry William (Clara Heinshei... | female | 28.34369 | 1 | 0 | PC 17611 | 133.6500 | NaN | S |
347 | 348 | 1 | 3 | Davison, Mrs. Thomas Henry (Mary E Finck) | female | 28.34369 | 1 | 0 | 386525 | 16.1000 | NaN | S |
358 | 359 | 1 | 3 | McGovern, Miss. Mary | female | 28.34369 | 0 | 0 | 330931 | 7.8792 | NaN | Q |
359 | 360 | 1 | 3 | Mockler, Miss. Helen Mary "Ellie" | female | 28.34369 | 0 | 0 | 330980 | 7.8792 | NaN | Q |
367 | 368 | 1 | 3 | Moussa, Mrs. (Mantoura Boulos) | female | 28.34369 | 0 | 0 | 2626 | 7.2292 | NaN | C |
368 | 369 | 1 | 3 | Jermyn, Miss. Annie | female | 28.34369 | 0 | 0 | 14313 | 7.7500 | NaN | Q |
375 | 376 | 1 | 1 | Meyer, Mrs. Edgar Joseph (Leila Saks) | female | 28.34369 | 1 | 0 | PC 17604 | 82.1708 | NaN | C |
431 | 432 | 1 | 3 | Thorneycroft, Mrs. Percival (Florence Kate White) | female | 28.34369 | 1 | 0 | 376564 | 16.1000 | NaN | S |
444 | 445 | 1 | 3 | Johannesen-Bratthammer, Mr. Bernt | male | 28.34369 | 0 | 0 | 65306 | 8.1125 | NaN | S |
457 | 458 | 1 | 1 | Kenyon, Mrs. Frederick R (Marion) | female | 28.34369 | 1 | 0 | 17464 | 51.8625 | D21 | S |
507 | 508 | 1 | 1 | Bradley, Mr. George ("George Arthur Brayton") | male | 28.34369 | 0 | 0 | 111427 | 26.5500 | NaN | S |
533 | 534 | 1 | 3 | Peter, Mrs. Catherine (Catherine Rizk) | female | 28.34369 | 0 | 2 | 2668 | 22.3583 | NaN | C |
547 | 548 | 1 | 2 | Padro y Manent, Mr. Julian | male | 28.34369 | 0 | 0 | SC/PARIS 2146 | 13.8625 | NaN | C |
573 | 574 | 1 | 3 | Kelly, Miss. Mary | female | 28.34369 | 0 | 0 | 14312 | 7.7500 | NaN | Q |
596 | 597 | 1 | 2 | Leitch, Miss. Jessie Wills | female | 28.34369 | 0 | 0 | 248727 | 33.0000 | NaN | S |
612 | 613 | 1 | 3 | Murphy, Miss. Margaret Jane | female | 28.34369 | 1 | 0 | 367230 | 15.5000 | NaN | Q |
643 | 644 | 1 | 3 | Foo, Mr. Choong | male | 28.34369 | 0 | 0 | 1601 | 56.4958 | NaN | S |
653 | 654 | 1 | 3 | O'Leary, Miss. Hanora "Norah" | female | 28.34369 | 0 | 0 | 330919 | 7.8292 | NaN | Q |
669 | 670 | 1 | 1 | Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright) | female | 28.34369 | 1 | 0 | 19996 | 52.0000 | C126 | S |
692 | 693 | 1 | 3 | Lam, Mr. Ali | male | 28.34369 | 0 | 0 | 1601 | 56.4958 | NaN | S |
697 | 698 | 1 | 3 | Mullens, Miss. Katherine "Katie" | female | 28.34369 | 0 | 0 | 35852 | 7.7333 | NaN | Q |
709 | 710 | 1 | 3 | Moubarek, Master. Halim Gonios ("William George") | male | 28.34369 | 1 | 1 | 2661 | 15.2458 | NaN | C |
727 | 728 | 1 | 3 | Mannion, Miss. Margareth | female | 28.34369 | 0 | 0 | 36866 | 7.7375 | NaN | Q |
740 | 741 | 1 | 1 | Hawksford, Mr. Walter James | male | 28.34369 | 0 | 0 | 16988 | 30.0000 | D45 | S |
828 | 829 | 1 | 3 | McCormack, Mr. Thomas Joseph | male | 28.34369 | 0 | 0 | 367228 | 7.7500 | NaN | Q |
839 | 840 | 1 | 1 | Marechal, Mr. Pierre | male | 28.34369 | 0 | 0 | 11774 | 29.7000 | C47 | C |
849 | 850 | 1 | 1 | Goldenberg, Mrs. Samuel L (Edwiga Grabowska) | female | 28.34369 | 1 | 0 | 17453 | 89.1042 | C92 | C |
train_data[train_data['Age'] == 30.62617924528302] #사망자만 보기 / NaN 값이 바뀐 것을 확인 할수 있다
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 0 | 3 | Moran, Mr. James | male | 30.626179 | 0 | 0 | 330877 | 8.4583 | NaN | Q |
26 | 27 | 0 | 3 | Emir, Mr. Farred Chehab | male | 30.626179 | 0 | 0 | 2631 | 7.2250 | NaN | C |
29 | 30 | 0 | 3 | Todoroff, Mr. Lalio | male | 30.626179 | 0 | 0 | 349216 | 7.8958 | NaN | S |
42 | 43 | 0 | 3 | Kraeff, Mr. Theodor | male | 30.626179 | 0 | 0 | 349253 | 7.8958 | NaN | C |
45 | 46 | 0 | 3 | Rogers, Mr. William John | male | 30.626179 | 0 | 0 | S.C./A.4. 23567 | 8.0500 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
859 | 860 | 0 | 3 | Razi, Mr. Raihed | male | 30.626179 | 0 | 0 | 2629 | 7.2292 | NaN | C |
863 | 864 | 0 | 3 | Sage, Miss. Dorothy Edith "Dolly" | female | 30.626179 | 8 | 2 | CA. 2343 | 69.5500 | NaN | S |
868 | 869 | 0 | 3 | van Melkebeke, Mr. Philemon | male | 30.626179 | 0 | 0 | 345777 | 9.5000 | NaN | S |
878 | 879 | 0 | 3 | Laleff, Mr. Kristo | male | 30.626179 | 0 | 0 | 349217 | 7.8958 | NaN | S |
888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | 30.626179 | 1 | 2 | W./C. 6607 | 23.4500 | NaN | S |
125 rows × 12 columns