DataFrame 원하는 row(데이터)만 선택하기
학습목표
- dataframe row 선택하기
import numpy as np
import pandas as pd
# data 출처: https://www.kaggle.com/hesh97/titanicdataset-traincsv/data
train_data = pd.read_csv('./train.csv')
train_data.head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
dataframe slicing
- dataframe의 경우 기본적으로 [] 연산자가 column 선택에 사용
- 하지만, slicing은 row 레벨로 지원
train_data[7:10]
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | 8 | 0 | 3 | Palsson, Master. Gosta Leonard | male | 2.0 | 3 | 1 | 349909 | 21.0750 | NaN | S |
8 | 9 | 1 | 3 | Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) | female | 27.0 | 0 | 2 | 347742 | 11.1333 | NaN | S |
9 | 10 | 1 | 2 | Nasser, Mrs. Nicholas (Adele Achem) | female | 14.0 | 1 | 0 | 237736 | 30.0708 | NaN | C |
row 선택하기
- Seires의 경우 []로 row 선택이 가능하나, DataFrame의 경우는 기본적으로 column을 선택하도록 설계
- .loc, .iloc로 row 선택 가능
- loc - 인덱스 자체를 사용
- iloc - 0 based index로 사용
- 이 두 함수는 ,를 사용하여 column 선택도 가능
train_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
train_data.index = np.arange(100, 991)
train_data.head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
101 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
102 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
103 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
104 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
train_data.tail()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
986 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.00 | NaN | S |
987 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.00 | B42 | S |
988 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | NaN | 1 | 2 | W./C. 6607 | 23.45 | NaN | S |
989 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.00 | C148 | C |
990 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.75 | NaN | Q |
train_data.loc[986] #index 명시해줌
PassengerId 887
Survived 0
Pclass 2
Name Montvila, Rev. Juozas
Sex male
Age 27.0
SibSp 0
Parch 0
Ticket 211536
Fare 13.0
Cabin NaN
Embarked S
Name: 986, dtype: object
train_data.loc[[986, 100, 110, 990]] #복수 loc 조회하려면 리스트 형태로 준다
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
986 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.00 | NaN | S |
100 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.25 | NaN | S |
110 | 11 | 1 | 3 | Sandstrom, Miss. Marguerite Rut | female | 4.0 | 1 | 1 | PP 9549 | 16.70 | G6 | S |
990 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.75 | NaN | Q |
train_data.head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
101 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
102 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
103 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
104 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
train_data.iloc[0] # 100이 0번째 주소이다
PassengerId 1
Survived 0
Pclass 3
Name Braund, Mr. Owen Harris
Sex male
Age 22.0
SibSp 1
Parch 0
Ticket A/5 21171
Fare 7.25
Cabin NaN
Embarked S
Name: 100, dtype: object
train_data.iloc[[0, 100, 200, 2]] # loc 는 정확한 주소를 이용하고 iloc 는 순서를 이용할 때 사용한다. /0 based index로 사용 /
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
200 | 101 | 0 | 3 | Petranec, Miss. Matilda | female | 28.0 | 0 | 0 | 349245 | 7.8958 | NaN | S |
300 | 201 | 0 | 3 | Vande Walle, Mr. Nestor Cyriel | male | 28.0 | 0 | 0 | 345770 | 9.5000 | NaN | S |
102 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
row, column 동시에 선택하기
- loc, iloc 속성을 이용할 때, 콤마를 이용하여 둘 다 명시 가능
train_data.loc[[986, 100, 110, 990], ['Survived', 'Name', 'Sex', 'Age']]
Survived | Name | Sex | Age | |
---|---|---|---|---|
986 | 0 | Montvila, Rev. Juozas | male | 27.0 |
100 | 0 | Braund, Mr. Owen Harris | male | 22.0 |
110 | 1 | Sandstrom, Miss. Marguerite Rut | female | 4.0 |
990 | 0 | Dooley, Mr. Patrick | male | 32.0 |
train_data.iloc[[101, 100, 200, 102], [1, 4, 5]] # 맨뒤 컬럼값도 0 based index로 사용 , 0 번째 주소는 PassengerId이다
Survived | Sex | Age | |
---|---|---|---|
201 | 0 | male | NaN |
200 | 0 | female | 28.0 |
300 | 0 | male | 28.0 |
202 | 0 | male | 21.0 |