경사하강법 기초

경사하강법

  • W: Learning Rate * ((Y예측 - Y실제) * X)평균
  • b: Learning Rate * ((Y예측 - Y실제) * 1)평균
import numpy as np
import matplotlib.pyplot as plt
X = np.random.rand(100)
Y = 0.2 * X * 0.5
plt.figure(figsize=(8,6))
plt.scatter(X, Y)
plt.show()

output_4_0

def plot_prediction(pred, y):
    plt.figure(figsize=(8, 6))
    plt.scatter(X, y)
    plt.scatter(X, pred)
    plt.show()

Gradient Descent 구현

  • W: Learning Rate * ((Y예측 - Y실제) * X)평균
  • b: Learning Rate * ((Y예측 - Y실제) * 1)평균
W = np.random.uniform(-1, 1)
b = np.random.uniform(-1, 1)

learning_rate = 0.7

for epoch in range(200):
    Y_Pred = W * X + b

    error = np.abs(Y_Pred - Y).mean()
    if error < 0.001:
        break

    # gradient descent 계산
    w_grad = learning_rate * ((Y_Pred - Y)*X).mean()
    b_grad = learning_rate * (Y_Pred - Y).mean()

    # W, b 값 갱신
    W = W - w_grad
    b = b - b_grad

    if epoch % 10 == 0:
        Y_pred = W * X + b
        plot_prediction(Y_Pred, Y)

output_8_0

output_8_1

output_8_2

output_8_3

output_8_4

output_8_5

output_8_6

output_8_7

output_8_8

output_8_9