빅데이터 시각화 중간고사 대비 정리 3

빅데이터 시각화 중간고사 대비 정리하기 3

blood.type1 =c("A","B","O","AB")
blood.type2=factor(c("A","B","O","AB"))
blood.type1
blood.type2

<ol class=list-inline> <li>‘A’</li> <li>‘B’</li> <li>‘O’</li> <li>‘AB’</li> </ol>

<ol class=list-inline> <li>A</li> <li>B</li> <li>O</li> <li>AB</li> </ol>

<summary style=display:list-item;cursor:pointer> Levels: </summary> <ol class=list-inline>
  • 'A'
  • 'AB'
  • 'B'
  • 'O'
  • </ol>
    is.character(blood.type1)
    is.character(blood.type2)
    

    TRUE

    FALSE

    
    is.factor(blood.type1)
    is.factor(blood.type2)# factor true
    

    FALSE

    TRUE

    x = c(1:10)
    x=x[seq(2,length(x),2)]
    x
    

    <ol class=list-inline> <li>2</li> <li>4</li> <li>6</li> <li>8</li> <li>10</li> </ol>

    x=array(1:24,c(4,6))
    x
    x=x[,seq(1,dim(x)[2],2)]
    x
    
    1 5 9131721
    2 6 10141822
    3 7 11151923
    4 8 12162024
    1 917
    2 1018
    3 1119
    4 1220
    
    #BMI 계산기
    BMI = function(height,weight){
      height = height/100
      bmi = weight /height^2
      return(bmi)
    }
    
    BMI(175,65)
    

    21.2244897959184

    
    #NA(결측치)데이터 처리
    data <- c(10,20,30,NA,6,3,NA)
    data
    mean(data)
    mean(data, na.rm = T)#NA값을 지워야지 mean값나옴
    

    <ol class=list-inline> <li>10</li> <li>20</li> <li>30</li> <li><NA></li> <li>6</li> <li>3</li> <li><NA></li> </ol>

    <NA>

    13.8

    
    #벡터 for
    score <- c(85,94,96)
    name <- c("홍길동","이순신","강감찬")
    i<-1 
    for (s in score) {
      cat(name[i],"->",s,"\n")
      i<-i+1
      
    }
    #실행결과
    #홍길동 -> 85 
    #이순신 -> 94 
    #강감찬 -> 96 
    
    
    홍길동 -> 85 
    이순신 -> 94 
    강감찬 -> 96 
    
    
    i=0
    
    while (i<10) {
      i<-i+1
      print(i)
      
    }
    
    [1] 1
    [1] 2
    [1] 3
    [1] 4
    [1] 5
    [1] 6
    [1] 7
    [1] 8
    [1] 9
    [1] 10
    
    
    #학점 구하기
    score<-scan()
    score<-c(80)
    
    if(score>=90){
      result="A학점"
    }else if(score >=80){
      result="B학점"
    }else if(score>=70){
      result="C학점"
    }else if(score>=60){
      result="D학점"
    }else{
      result="F학점"
    }
    
    cat("당신의 학점은:",result)
    print(result)
    
    당신의 학점은: B학점[1] "B학점"
    
    
    #ifelse "노력" "우수" "우수" "노력"
    score <-c(75,95,85,65)
    score
    ifelse(score>=80,"우수","노력")
    
    

    <ol class=list-inline> <li>75</li> <li>95</li> <li>85</li> <li>65</li> </ol>

    <ol class=list-inline> <li>‘노력’</li> <li>‘우수’</li> <li>‘우수’</li> <li>‘노력’</li> </ol>

    
    #숫자 대소 관계 비교 함수 2개의 숫자중 큰수 출력
    mymax <- function(x,y){
      num.max <- x
      if(y>x){
        num.max <-y
      }
      return(num.max)
    }
    
    mymax(10,15)
    mymax(20,15)
    
    
    

    15

    20

    
    
    #data.frame (데이터 프레임)
    students <- c("John", "Mary", "Ethan", "Dora") #문자열벡터 
    test.results <- c(76, 82, 84, 67) #숫자벡터
    test.grade <- c("B", "A", "A", "C") #문자열벡터
    third.class.df <- data.frame(students, test.results, test.grade) #데이터 프레임 생성
    third.class.df
    
    
    studentstest.resultstest.grade
    John 76 B
    Mary 82 A
    Ethan84 A
    Dora 67 C
    
    ncol(third.class.df)
    nrow(third.class.df)
    

    3

    4

    
    #행이름 지정
    rownames(third.class.df) <- c("a transfer1", "a transfer2", "a transfer3", "a transfer4")
    third.class.df
    
    studentstest.resultstest.grade
    a transfer1John 76 B
    a transfer2Mary 82 A
    a transfer3Ethan84 A
    a transfer4Dora 67 C
    
    #열추가 (cbind)
    student_Id <-c("333","111","222","444")
    third.class.df<- cbind(third.class.df,student_Id)
    third.class.df
    
    
    studentstest.resultstest.gradestudent_Id
    a transfer1John 76 B 333
    a transfer2Mary 82 A 111
    a transfer3Ethan84 A 222
    a transfer4Dora 67 C 444
    
    #행추가(rbind)
    TED<- c("Ted",70,"B","012312")
    third.class.df<- rbind(third.class.df,TED)
    third.class.df
    
    Warning message in `[<-.factor`(`*tmp*`, ri, value = "Ted"):
    "invalid factor level, NA generated"Warning message in `[<-.factor`(`*tmp*`, ri, value = "012312"):
    "invalid factor level, NA generated"
    
    studentstest.resultstest.gradestudent_Id
    a transfer1John 76 B 333
    a transfer2Mary 82 A 111
    a transfer3Ethan84 A 222
    a transfer4Dora 67 C 444
    5NA 70 B NA
    
    #데이터 프레임 열 제거하기
    third.class.df[,-3] #3번째 열만 제거
    third.class.df
    
    studentstest.resultsstudent_Id
    a transfer1John 76 333
    a transfer2Mary 82 111
    a transfer3Ethan84 222
    a transfer4Dora 67 444
    5NA 70 NA
    studentstest.resultstest.gradestudent_Id
    a transfer1John 76 B 333
    a transfer2Mary 82 A 111
    a transfer3Ethan84 A 222
    a transfer4Dora 67 C 444
    5NA 70 B NA
    
    #데이터 프레임 열 제거하기 (subset())
    subset(third.class.df,select = -c(students))
    
    
    test.resultstest.gradestudent_Id
    a transfer176 B 333
    a transfer282 A 111
    a transfer384 A 222
    a transfer467 C 444
    570 B NA
    
    #iris 데이터셋
    iris
    
    
    Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSpecies
    5.1 3.5 1.4 0.2 setosa
    4.9 3.0 1.4 0.2 setosa
    4.7 3.2 1.3 0.2 setosa
    4.6 3.1 1.5 0.2 setosa
    5.0 3.6 1.4 0.2 setosa
    5.4 3.9 1.7 0.4 setosa
    4.6 3.4 1.4 0.3 setosa
    5.0 3.4 1.5 0.2 setosa
    4.4 2.9 1.4 0.2 setosa
    4.9 3.1 1.5 0.1 setosa
    5.4 3.7 1.5 0.2 setosa
    4.8 3.4 1.6 0.2 setosa
    4.8 3.0 1.4 0.1 setosa
    4.3 3.0 1.1 0.1 setosa
    5.8 4.0 1.2 0.2 setosa
    5.7 4.4 1.5 0.4 setosa
    5.4 3.9 1.3 0.4 setosa
    5.1 3.5 1.4 0.3 setosa
    5.7 3.8 1.7 0.3 setosa
    5.1 3.8 1.5 0.3 setosa
    5.4 3.4 1.7 0.2 setosa
    5.1 3.7 1.5 0.4 setosa
    4.6 3.6 1.0 0.2 setosa
    5.1 3.3 1.7 0.5 setosa
    4.8 3.4 1.9 0.2 setosa
    5.0 3.0 1.6 0.2 setosa
    5.0 3.4 1.6 0.4 setosa
    5.2 3.5 1.5 0.2 setosa
    5.2 3.4 1.4 0.2 setosa
    4.7 3.2 1.6 0.2 setosa
    ...............
    6.9 3.2 5.7 2.3 virginica
    5.6 2.8 4.9 2.0 virginica
    7.7 2.8 6.7 2.0 virginica
    6.3 2.7 4.9 1.8 virginica
    6.7 3.3 5.7 2.1 virginica
    7.2 3.2 6.0 1.8 virginica
    6.2 2.8 4.8 1.8 virginica
    6.1 3.0 4.9 1.8 virginica
    6.4 2.8 5.6 2.1 virginica
    7.2 3.0 5.8 1.6 virginica
    7.4 2.8 6.1 1.9 virginica
    7.9 3.8 6.4 2.0 virginica
    6.4 2.8 5.6 2.2 virginica
    6.3 2.8 5.1 1.5 virginica
    6.1 2.6 5.6 1.4 virginica
    7.7 3.0 6.1 2.3 virginica
    6.3 3.4 5.6 2.4 virginica
    6.4 3.1 5.5 1.8 virginica
    6.0 3.0 4.8 1.8 virginica
    6.9 3.1 5.4 2.1 virginica
    6.7 3.1 5.6 2.4 virginica
    6.9 3.1 5.1 2.3 virginica
    5.8 2.7 5.1 1.9 virginica
    6.8 3.2 5.9 2.3 virginica
    6.7 3.3 5.7 2.5 virginica
    6.7 3.0 5.2 2.3 virginica
    6.3 2.5 5.0 1.9 virginica
    6.5 3.0 5.2 2.0 virginica
    6.2 3.4 5.4 2.3 virginica
    5.9 3.0 5.1 1.8 virginica
    
    iris[,c(1:2)]
    
    Sepal.LengthSepal.Width
    5.13.5
    4.93.0
    4.73.2
    4.63.1
    5.03.6
    5.43.9
    4.63.4
    5.03.4
    4.42.9
    4.93.1
    5.43.7
    4.83.4
    4.83.0
    4.33.0
    5.84.0
    5.74.4
    5.43.9
    5.13.5
    5.73.8
    5.13.8
    5.43.4
    5.13.7
    4.63.6
    5.13.3
    4.83.4
    5.03.0
    5.03.4
    5.23.5
    5.23.4
    4.73.2
    ......
    6.93.2
    5.62.8
    7.72.8
    6.32.7
    6.73.3
    7.23.2
    6.22.8
    6.13.0
    6.42.8
    7.23.0
    7.42.8
    7.93.8
    6.42.8
    6.32.8
    6.12.6
    7.73.0
    6.33.4
    6.43.1
    6.03.0
    6.93.1
    6.73.1
    6.93.1
    5.82.7
    6.83.2
    6.73.3
    6.73.0
    6.32.5
    6.53.0
    6.23.4
    5.93.0
    
    iris[,c(1,3,5)]#1,3,5열의 모든 데이터
    
    
    Sepal.LengthPetal.LengthSpecies
    5.1 1.4 setosa
    4.9 1.4 setosa
    4.7 1.3 setosa
    4.6 1.5 setosa
    5.0 1.4 setosa
    5.4 1.7 setosa
    4.6 1.4 setosa
    5.0 1.5 setosa
    4.4 1.4 setosa
    4.9 1.5 setosa
    5.4 1.5 setosa
    4.8 1.6 setosa
    4.8 1.4 setosa
    4.3 1.1 setosa
    5.8 1.2 setosa
    5.7 1.5 setosa
    5.4 1.3 setosa
    5.1 1.4 setosa
    5.7 1.7 setosa
    5.1 1.5 setosa
    5.4 1.7 setosa
    5.1 1.5 setosa
    4.6 1.0 setosa
    5.1 1.7 setosa
    4.8 1.9 setosa
    5.0 1.6 setosa
    5.0 1.6 setosa
    5.2 1.5 setosa
    5.2 1.4 setosa
    4.7 1.6 setosa
    .........
    6.9 5.7 virginica
    5.6 4.9 virginica
    7.7 6.7 virginica
    6.3 4.9 virginica
    6.7 5.7 virginica
    7.2 6.0 virginica
    6.2 4.8 virginica
    6.1 4.9 virginica
    6.4 5.6 virginica
    7.2 5.8 virginica
    7.4 6.1 virginica
    7.9 6.4 virginica
    6.4 5.6 virginica
    6.3 5.1 virginica
    6.1 5.6 virginica
    7.7 6.1 virginica
    6.3 5.6 virginica
    6.4 5.5 virginica
    6.0 4.8 virginica
    6.9 5.4 virginica
    6.7 5.6 virginica
    6.9 5.1 virginica
    5.8 5.1 virginica
    6.8 5.9 virginica
    6.7 5.7 virginica
    6.7 5.2 virginica
    6.3 5.0 virginica
    6.5 5.2 virginica
    6.2 5.4 virginica
    5.9 5.1 virginica
    
    iris[,c("Species")]#컬럼이름으로 데이터 조회
    

    <ol class=list-inline> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>setosa</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>versicolor</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> <li>virginica</li> </ol>

    <summary style=display:list-item;cursor:pointer> Levels: </summary> <ol class=list-inline>
  • 'setosa'
  • 'versicolor'
  • 'virginica'
  • </ol>
    
    #apply 함수적용
    apply(iris[,1:4],1,mean)#row방향으로 평균을 구하는 함수
    apply(iris[,1:4],2,mean) #col 방향으로 평균을 구하는 함수
    
    

    <ol class=list-inline> <li>2.55</li> <li>2.375</li> <li>2.35</li> <li>2.35</li> <li>2.55</li> <li>2.85</li> <li>2.425</li> <li>2.525</li> <li>2.225</li> <li>2.4</li> <li>2.7</li> <li>2.5</li> <li>2.325</li> <li>2.125</li> <li>2.8</li> <li>3</li> <li>2.75</li> <li>2.575</li> <li>2.875</li> <li>2.675</li> <li>2.675</li> <li>2.675</li> <li>2.35</li> <li>2.65</li> <li>2.575</li> <li>2.45</li> <li>2.6</li> <li>2.6</li> <li>2.55</li> <li>2.425</li> <li>2.425</li> <li>2.675</li> <li>2.725</li> <li>2.825</li> <li>2.425</li> <li>2.4</li> <li>2.625</li> <li>2.5</li> <li>2.225</li> <li>2.55</li> <li>2.525</li> <li>2.1</li> <li>2.275</li> <li>2.675</li> <li>2.8</li> <li>2.375</li> <li>2.675</li> <li>2.35</li> <li>2.675</li> <li>2.475</li> <li>4.075</li> <li>3.9</li> <li>4.1</li> <li>3.275</li> <li>3.85</li> <li>3.575</li> <li>3.975</li> <li>2.9</li> <li>3.85</li> <li>3.3</li> <li>2.875</li> <li>3.65</li> <li>3.3</li> <li>3.775</li> <li>3.35</li> <li>3.9</li> <li>3.65</li> <li>3.4</li> <li>3.6</li> <li>3.275</li> <li>3.925</li> <li>3.55</li> <li>3.8</li> <li>3.7</li> <li>3.725</li> <li>3.85</li> <li>3.95</li> <li>4.1</li> <li>3.725</li> <li>3.2</li> <li>3.2</li> <li>3.15</li> <li>3.4</li> <li>3.85</li> <li>3.6</li> <li>3.875</li> <li>4</li> <li>3.575</li> <li>3.5</li> <li>3.325</li> <li>3.425</li> <li>3.775</li> <li>3.4</li> <li>2.9</li> <li>3.45</li> <li>3.525</li> <li>3.525</li> <li>3.675</li> <li>2.925</li> <li>3.475</li> <li>4.525</li> <li>3.875</li> <li>4.525</li> <li>4.15</li> <li>4.375</li> <li>4.825</li> <li>3.4</li> <li>4.575</li> <li>4.2</li> <li>4.85</li> <li>4.2</li> <li>4.075</li> <li>4.35</li> <li>3.8</li> <li>4.025</li> <li>4.3</li> <li>4.2</li> <li>5.1</li> <li>4.875</li> <li>3.675</li> <li>4.525</li> <li>3.825</li> <li>4.8</li> <li>3.925</li> <li>4.45</li> <li>4.55</li> <li>3.9</li> <li>3.95</li> <li>4.225</li> <li>4.4</li> <li>4.55</li> <li>5.025</li> <li>4.25</li> <li>3.925</li> <li>3.925</li> <li>4.775</li> <li>4.425</li> <li>4.2</li> <li>3.9</li> <li>4.375</li> <li>4.45</li> <li>4.35</li> <li>3.875</li> <li>4.55</li> <li>4.55</li> <li>4.3</li> <li>3.925</li> <li>4.175</li> <li>4.325</li> <li>3.95</li> </ol>

    <dl class=dl-horizontal> <dt>Sepal.Length</dt> <dd>5.84333333333333</dd> <dt>Sepal.Width</dt> <dd>3.05733333333333</dd> <dt>Petal.Length</dt> <dd>3.758</dd> <dt>Petal.Width</dt> <dd>1.19933333333333</dd> </dl>

    
    #gapminder
    #한 식으로 표현
    library(gapminder)
    gapminder
    
    countrycontinentyearlifeExppopgdpPercap
    AfghanistanAsia 1952 28.801 8425333 779.4453
    AfghanistanAsia 1957 30.332 9240934 820.8530
    AfghanistanAsia 1962 31.997 10267083 853.1007
    AfghanistanAsia 1967 34.020 11537966 836.1971
    AfghanistanAsia 1972 36.088 13079460 739.9811
    AfghanistanAsia 1977 38.438 14880372 786.1134
    AfghanistanAsia 1982 39.854 12881816 978.0114
    AfghanistanAsia 1987 40.822 13867957 852.3959
    AfghanistanAsia 1992 41.674 16317921 649.3414
    AfghanistanAsia 1997 41.763 22227415 635.3414
    AfghanistanAsia 2002 42.129 25268405 726.7341
    AfghanistanAsia 2007 43.828 31889923 974.5803
    Albania Europe 1952 55.230 1282697 1601.0561
    Albania Europe 1957 59.280 1476505 1942.2842
    Albania Europe 1962 64.820 1728137 2312.8890
    Albania Europe 1967 66.220 1984060 2760.1969
    Albania Europe 1972 67.690 2263554 3313.4222
    Albania Europe 1977 68.930 2509048 3533.0039
    Albania Europe 1982 70.420 2780097 3630.8807
    Albania Europe 1987 72.000 3075321 3738.9327
    Albania Europe 1992 71.581 3326498 2497.4379
    Albania Europe 1997 72.950 3428038 3193.0546
    Albania Europe 2002 75.651 3508512 4604.2117
    Albania Europe 2007 76.423 3600523 5937.0295
    Algeria Africa 1952 43.077 9279525 2449.0082
    Algeria Africa 1957 45.685 10270856 3013.9760
    Algeria Africa 1962 48.303 11000948 2550.8169
    Algeria Africa 1967 51.407 12760499 3246.9918
    Algeria Africa 1972 54.518 14760787 4182.6638
    Algeria Africa 1977 58.014 17152804 4910.4168
    ..................
    Yemen, Rep.Asia 1982 49.113 9657618 1977.5570
    Yemen, Rep.Asia 1987 52.922 11219340 1971.7415
    Yemen, Rep.Asia 1992 55.599 13367997 1879.4967
    Yemen, Rep.Asia 1997 58.020 15826497 2117.4845
    Yemen, Rep.Asia 2002 60.308 18701257 2234.8208
    Yemen, Rep.Asia 2007 62.698 22211743 2280.7699
    Zambia Africa 1952 42.038 2672000 1147.3888
    Zambia Africa 1957 44.077 3016000 1311.9568
    Zambia Africa 1962 46.023 3421000 1452.7258
    Zambia Africa 1967 47.768 3900000 1777.0773
    Zambia Africa 1972 50.107 4506497 1773.4983
    Zambia Africa 1977 51.386 5216550 1588.6883
    Zambia Africa 1982 51.821 6100407 1408.6786
    Zambia Africa 1987 50.821 7272406 1213.3151
    Zambia Africa 1992 46.100 8381163 1210.8846
    Zambia Africa 1997 40.238 9417789 1071.3538
    Zambia Africa 2002 39.193 10595811 1071.6139
    Zambia Africa 2007 42.384 11746035 1271.2116
    Zimbabwe Africa 1952 48.451 3080907 406.8841
    Zimbabwe Africa 1957 50.469 3646340 518.7643
    Zimbabwe Africa 1962 52.358 4277736 527.2722
    Zimbabwe Africa 1967 53.995 4995432 569.7951
    Zimbabwe Africa 1972 55.635 5861135 799.3622
    Zimbabwe Africa 1977 57.674 6642107 685.5877
    Zimbabwe Africa 1982 60.363 7636524 788.8550
    Zimbabwe Africa 1987 62.351 9216418 706.1573
    Zimbabwe Africa 1992 60.377 10704340 693.4208
    Zimbabwe Africa 1997 46.809 11404948 792.4500
    Zimbabwe Africa 2002 39.989 11926563 672.0386
    Zimbabwe Africa 2007 43.487 12311143 469.7093
    
    gapminder[gapminder$country=="Croatia"&gapminder$year>1992,c("lifeExp","pop")]
    #조건식 여러개를 논리 연산자로 결합
    
    lifeExppop
    73.680 4444595
    74.876 4481020
    75.748 4493312
    
    #col mean 계산
    apply(gapminder[gapminder$country=="Croatia",c("lifeExp","pop")],2,mean)
    
    

    <dl class=dl-horizontal> <dt>lifeExp</dt> <dd>70.0559166666667</dd> <dt>pop</dt> <dd>4289916.25</dd> </dl>

    
    #select 함수 사용하려면 dplyr 라이브러리 필수임
    library(dplyr) 
    select(gapminder,country,year,lifeExp)
    
    
    Attaching package: 'dplyr'
    
    The following objects are masked from 'package:stats':
    
        filter, lag
    
    The following objects are masked from 'package:base':
    
        intersect, setdiff, setequal, union
    
    countryyearlifeExp
    Afghanistan1952 28.801
    Afghanistan1957 30.332
    Afghanistan1962 31.997
    Afghanistan1967 34.020
    Afghanistan1972 36.088
    Afghanistan1977 38.438
    Afghanistan1982 39.854
    Afghanistan1987 40.822
    Afghanistan1992 41.674
    Afghanistan1997 41.763
    Afghanistan2002 42.129
    Afghanistan2007 43.828
    Albania 1952 55.230
    Albania 1957 59.280
    Albania 1962 64.820
    Albania 1967 66.220
    Albania 1972 67.690
    Albania 1977 68.930
    Albania 1982 70.420
    Albania 1987 72.000
    Albania 1992 71.581
    Albania 1997 72.950
    Albania 2002 75.651
    Albania 2007 76.423
    Algeria 1952 43.077
    Algeria 1957 45.685
    Algeria 1962 48.303
    Algeria 1967 51.407
    Algeria 1972 54.518
    Algeria 1977 58.014
    .........
    Yemen, Rep.1982 49.113
    Yemen, Rep.1987 52.922
    Yemen, Rep.1992 55.599
    Yemen, Rep.1997 58.020
    Yemen, Rep.2002 60.308
    Yemen, Rep.2007 62.698
    Zambia 1952 42.038
    Zambia 1957 44.077
    Zambia 1962 46.023
    Zambia 1967 47.768
    Zambia 1972 50.107
    Zambia 1977 51.386
    Zambia 1982 51.821
    Zambia 1987 50.821
    Zambia 1992 46.100
    Zambia 1997 40.238
    Zambia 2002 39.193
    Zambia 2007 42.384
    Zimbabwe 1952 48.451
    Zimbabwe 1957 50.469
    Zimbabwe 1962 52.358
    Zimbabwe 1967 53.995
    Zimbabwe 1972 55.635
    Zimbabwe 1977 57.674
    Zimbabwe 1982 60.363
    Zimbabwe 1987 62.351
    Zimbabwe 1992 60.377
    Zimbabwe 1997 46.809
    Zimbabwe 2002 39.989
    Zimbabwe 2007 43.487
    
    #filter() 특정 샘플(행) 추출 시 사용 
    filter(gapminder,country=="Croatia")
    
    countrycontinentyearlifeExppopgdpPercap
    Croatia Europe 1952 61.210 3882229 3119.237
    Croatia Europe 1957 64.770 3991242 4338.232
    Croatia Europe 1962 67.130 4076557 5477.890
    Croatia Europe 1967 68.500 4174366 6960.298
    Croatia Europe 1972 69.610 4225310 9164.090
    Croatia Europe 1977 70.640 4318673 11305.385
    Croatia Europe 1982 70.460 4413368 13221.822
    Croatia Europe 1987 71.520 4484310 13822.584
    Croatia Europe 1992 72.527 4494013 8447.795
    Croatia Europe 1997 73.680 4444595 9875.605
    Croatia Europe 2002 74.876 4481020 11628.389
    Croatia Europe 2007 75.748 4493312 14619.223
    
    summarise(gapminder,pop_avg=mean(pop))
    gapminder
    
    pop_avg
    29601212
    countrycontinentyearlifeExppopgdpPercap
    AfghanistanAsia 1952 28.801 8425333 779.4453
    AfghanistanAsia 1957 30.332 9240934 820.8530
    AfghanistanAsia 1962 31.997 10267083 853.1007
    AfghanistanAsia 1967 34.020 11537966 836.1971
    AfghanistanAsia 1972 36.088 13079460 739.9811
    AfghanistanAsia 1977 38.438 14880372 786.1134
    AfghanistanAsia 1982 39.854 12881816 978.0114
    AfghanistanAsia 1987 40.822 13867957 852.3959
    AfghanistanAsia 1992 41.674 16317921 649.3414
    AfghanistanAsia 1997 41.763 22227415 635.3414
    AfghanistanAsia 2002 42.129 25268405 726.7341
    AfghanistanAsia 2007 43.828 31889923 974.5803
    Albania Europe 1952 55.230 1282697 1601.0561
    Albania Europe 1957 59.280 1476505 1942.2842
    Albania Europe 1962 64.820 1728137 2312.8890
    Albania Europe 1967 66.220 1984060 2760.1969
    Albania Europe 1972 67.690 2263554 3313.4222
    Albania Europe 1977 68.930 2509048 3533.0039
    Albania Europe 1982 70.420 2780097 3630.8807
    Albania Europe 1987 72.000 3075321 3738.9327
    Albania Europe 1992 71.581 3326498 2497.4379
    Albania Europe 1997 72.950 3428038 3193.0546
    Albania Europe 2002 75.651 3508512 4604.2117
    Albania Europe 2007 76.423 3600523 5937.0295
    Algeria Africa 1952 43.077 9279525 2449.0082
    Algeria Africa 1957 45.685 10270856 3013.9760
    Algeria Africa 1962 48.303 11000948 2550.8169
    Algeria Africa 1967 51.407 12760499 3246.9918
    Algeria Africa 1972 54.518 14760787 4182.6638
    Algeria Africa 1977 58.014 17152804 4910.4168
    ..................
    Yemen, Rep.Asia 1982 49.113 9657618 1977.5570
    Yemen, Rep.Asia 1987 52.922 11219340 1971.7415
    Yemen, Rep.Asia 1992 55.599 13367997 1879.4967
    Yemen, Rep.Asia 1997 58.020 15826497 2117.4845
    Yemen, Rep.Asia 2002 60.308 18701257 2234.8208
    Yemen, Rep.Asia 2007 62.698 22211743 2280.7699
    Zambia Africa 1952 42.038 2672000 1147.3888
    Zambia Africa 1957 44.077 3016000 1311.9568
    Zambia Africa 1962 46.023 3421000 1452.7258
    Zambia Africa 1967 47.768 3900000 1777.0773
    Zambia Africa 1972 50.107 4506497 1773.4983
    Zambia Africa 1977 51.386 5216550 1588.6883
    Zambia Africa 1982 51.821 6100407 1408.6786
    Zambia Africa 1987 50.821 7272406 1213.3151
    Zambia Africa 1992 46.100 8381163 1210.8846
    Zambia Africa 1997 40.238 9417789 1071.3538
    Zambia Africa 2002 39.193 10595811 1071.6139
    Zambia Africa 2007 42.384 11746035 1271.2116
    Zimbabwe Africa 1952 48.451 3080907 406.8841
    Zimbabwe Africa 1957 50.469 3646340 518.7643
    Zimbabwe Africa 1962 52.358 4277736 527.2722
    Zimbabwe Africa 1967 53.995 4995432 569.7951
    Zimbabwe Africa 1972 55.635 5861135 799.3622
    Zimbabwe Africa 1977 57.674 6642107 685.5877
    Zimbabwe Africa 1982 60.363 7636524 788.8550
    Zimbabwe Africa 1987 62.351 9216418 706.1573
    Zimbabwe Africa 1992 60.377 10704340 693.4208
    Zimbabwe Africa 1997 46.809 11404948 792.4500
    Zimbabwe Africa 2002 39.989 11926563 672.0386
    Zimbabwe Africa 2007 43.487 12311143 469.7093
    
    summarise(group_by(gapminder,continent),pop_avg=mean(pop))
    
    continentpop_avg
    Africa 9916003
    Americas24504795
    Asia 77038722
    Europe 17169765
    Oceania 8874672
    
    summarise(group_by(gapminder,continent,country),pop_avg=mean(pop))
    
    
    continentcountrypop_avg
    Africa Algeria 19875406.2
    Africa Angola 7309390.1
    Africa Benin 4017496.7
    Africa Botswana 971186.2
    Africa Burkina Faso 7548677.2
    Africa Burundi 4651608.3
    Africa Cameroon 9816648.4
    Africa Central African Republic 2560963.0
    Africa Chad 5329256.3
    Africa Comoros 361683.9
    Africa Congo, Dem. Rep. 32681655.2
    Africa Congo, Rep. 1923209.1
    Africa Cote d'Ivoire 9153109.5
    Africa Djibouti 260243.9
    Africa Egypt 46522774.2
    Africa Equatorial Guinea 327551.0
    Africa Eritrea 2820216.8
    Africa Ethiopia 41632518.8
    Africa Gabon 795415.4
    Africa Gambia 793138.6
    Africa Ghana 12616626.4
    Africa Guinea 5360550.7
    Africa Guinea-Bissau 882008.4
    Africa Kenya 18206250.2
    Africa Lesotho 1389696.4
    Africa Liberia 1813857.2
    Africa Libya 3166803.6
    Africa Madagascar 9902402.2
    Africa Malawi 7016377.4
    Africa Mali 7112340.1
    .........
    Europe Belgium 9725118.7
    Europe Bosnia and Herzegovina 3816524.8
    Europe Bulgaria 8182985.3
    Europe Croatia 4289916.2
    Europe Czech Republic 9986262.8
    Europe Denmark 4994187.3
    Europe Finland 4771321.0
    Europe France 52952564.3
    Europe Germany 77547043.3
    Europe Greece 9424181.1
    Europe Hungary 10217645.7
    Europe Iceland 226978.1
    Europe Ireland 3340825.9
    Europe Italy 54536958.0
    Europe Montenegro 564269.7
    Europe Netherlands 13786797.9
    Europe Norway 4031441.1
    Europe Poland 34323304.4
    Europe Portugal 9586273.9
    Europe Romania 20819090.2
    Europe Serbia 8783886.8
    Europe Slovak Republic 4774507.1
    Europe Slovenia 1794381.4
    Europe Spain 35851798.4
    Europe Sweden 8220028.9
    Europe Switzerland 6384293.2
    Europe Turkey 45909008.2
    Europe United Kingdom 56087800.7
    Oceania Australia 14649312.5
    Oceania New Zealand 3100032.2
    
    gapminder%>% group_by(continent,country)%>% summarise(pop_avg=mean(pop))
    
    
    continentcountrypop_avg
    Africa Algeria 19875406.2
    Africa Angola 7309390.1
    Africa Benin 4017496.7
    Africa Botswana 971186.2
    Africa Burkina Faso 7548677.2
    Africa Burundi 4651608.3
    Africa Cameroon 9816648.4
    Africa Central African Republic 2560963.0
    Africa Chad 5329256.3
    Africa Comoros 361683.9
    Africa Congo, Dem. Rep. 32681655.2
    Africa Congo, Rep. 1923209.1
    Africa Cote d'Ivoire 9153109.5
    Africa Djibouti 260243.9
    Africa Egypt 46522774.2
    Africa Equatorial Guinea 327551.0
    Africa Eritrea 2820216.8
    Africa Ethiopia 41632518.8
    Africa Gabon 795415.4
    Africa Gambia 793138.6
    Africa Ghana 12616626.4
    Africa Guinea 5360550.7
    Africa Guinea-Bissau 882008.4
    Africa Kenya 18206250.2
    Africa Lesotho 1389696.4
    Africa Liberia 1813857.2
    Africa Libya 3166803.6
    Africa Madagascar 9902402.2
    Africa Malawi 7016377.4
    Africa Mali 7112340.1
    .........
    Europe Belgium 9725118.7
    Europe Bosnia and Herzegovina 3816524.8
    Europe Bulgaria 8182985.3
    Europe Croatia 4289916.2
    Europe Czech Republic 9986262.8
    Europe Denmark 4994187.3
    Europe Finland 4771321.0
    Europe France 52952564.3
    Europe Germany 77547043.3
    Europe Greece 9424181.1
    Europe Hungary 10217645.7
    Europe Iceland 226978.1
    Europe Ireland 3340825.9
    Europe Italy 54536958.0
    Europe Montenegro 564269.7
    Europe Netherlands 13786797.9
    Europe Norway 4031441.1
    Europe Poland 34323304.4
    Europe Portugal 9586273.9
    Europe Romania 20819090.2
    Europe Serbia 8783886.8
    Europe Slovak Republic 4774507.1
    Europe Slovenia 1794381.4
    Europe Spain 35851798.4
    Europe Sweden 8220028.9
    Europe Switzerland 6384293.2
    Europe Turkey 45909008.2
    Europe United Kingdom 56087800.7
    Oceania Australia 14649312.5
    Oceania New Zealand 3100032.2
    
    gapminder%>% group_by(continent,country)%>% summarise(pop_avg=mean(pop))
    
    
    continentcountrypop_avg
    Africa Algeria 19875406.2
    Africa Angola 7309390.1
    Africa Benin 4017496.7
    Africa Botswana 971186.2
    Africa Burkina Faso 7548677.2
    Africa Burundi 4651608.3
    Africa Cameroon 9816648.4
    Africa Central African Republic 2560963.0
    Africa Chad 5329256.3
    Africa Comoros 361683.9
    Africa Congo, Dem. Rep. 32681655.2
    Africa Congo, Rep. 1923209.1
    Africa Cote d'Ivoire 9153109.5
    Africa Djibouti 260243.9
    Africa Egypt 46522774.2
    Africa Equatorial Guinea 327551.0
    Africa Eritrea 2820216.8
    Africa Ethiopia 41632518.8
    Africa Gabon 795415.4
    Africa Gambia 793138.6
    Africa Ghana 12616626.4
    Africa Guinea 5360550.7
    Africa Guinea-Bissau 882008.4
    Africa Kenya 18206250.2
    Africa Lesotho 1389696.4
    Africa Liberia 1813857.2
    Africa Libya 3166803.6
    Africa Madagascar 9902402.2
    Africa Malawi 7016377.4
    Africa Mali 7112340.1
    .........
    Europe Belgium 9725118.7
    Europe Bosnia and Herzegovina 3816524.8
    Europe Bulgaria 8182985.3
    Europe Croatia 4289916.2
    Europe Czech Republic 9986262.8
    Europe Denmark 4994187.3
    Europe Finland 4771321.0
    Europe France 52952564.3
    Europe Germany 77547043.3
    Europe Greece 9424181.1
    Europe Hungary 10217645.7
    Europe Iceland 226978.1
    Europe Ireland 3340825.9
    Europe Italy 54536958.0
    Europe Montenegro 564269.7
    Europe Netherlands 13786797.9
    Europe Norway 4031441.1
    Europe Poland 34323304.4
    Europe Portugal 9586273.9
    Europe Romania 20819090.2
    Europe Serbia 8783886.8
    Europe Slovak Republic 4774507.1
    Europe Slovenia 1794381.4
    Europe Spain 35851798.4
    Europe Sweden 8220028.9
    Europe Switzerland 6384293.2
    Europe Turkey 45909008.2
    Europe United Kingdom 56087800.7
    Oceania Australia 14649312.5
    Oceania New Zealand 3100032.2
    
    temp1 = filter(gapminder,country=="Croatia")
    temp1
    
    countrycontinentyearlifeExppopgdpPercap
    Croatia Europe 1952 61.210 3882229 3119.237
    Croatia Europe 1957 64.770 3991242 4338.232
    Croatia Europe 1962 67.130 4076557 5477.890
    Croatia Europe 1967 68.500 4174366 6960.298
    Croatia Europe 1972 69.610 4225310 9164.090
    Croatia Europe 1977 70.640 4318673 11305.385
    Croatia Europe 1982 70.460 4413368 13221.822
    Croatia Europe 1987 71.520 4484310 13822.584
    Croatia Europe 1992 72.527 4494013 8447.795
    Croatia Europe 1997 73.680 4444595 9875.605
    Croatia Europe 2002 74.876 4481020 11628.389
    Croatia Europe 2007 75.748 4493312 14619.223
    
    temp2 = select(temp1,country,year,lifeExp)
    temp2
    
    countryyearlifeExp
    Croatia1952 61.210
    Croatia1957 64.770
    Croatia1962 67.130
    Croatia1967 68.500
    Croatia1972 69.610
    Croatia1977 70.640
    Croatia1982 70.460
    Croatia1987 71.520
    Croatia1992 72.527
    Croatia1997 73.680
    Croatia2002 74.876
    Croatia2007 75.748
    
    temp3= apply(temp2[,c("lifeExp")],2,mean)
    temp3
    

    lifeExp: 70.0559166666667

    
    # 위에 소스 한 소스로 표현 가능
    gapminder %>% filter(country=="Croatia") %>% select(country,year,lifeExp) %>% summarise(lifeExp_avg=mean(lifeExp))
    
    
    lifeExp_avg
    70.05592
    
    #avocado
    avocado <- read.csv("C:/대학원자료/r로배우는데이터과학/Sources/avocado.csv",header=TRUE,sep=",")
    avocado
    
    XDateAveragePriceTotal.VolumeX4046X4225X4770Total.BagsSmall.BagsLarge.BagsXLarge.Bagstypeyearregion
    0 2015-12-27 1.33 64236.62 1036.74 54454.85 48.16 8696.87 8603.62 93.25 0.00 conventional2015 Albany
    1 2015-12-20 1.35 54876.98 674.28 44638.81 58.33 9505.56 9408.07 97.49 0.00 conventional2015 Albany
    2 2015-12-13 0.93 118220.22 794.70 109149.67 130.50 8145.35 8042.21 103.14 0.00 conventional2015 Albany
    3 2015-12-06 1.08 78992.15 1132.00 71976.41 72.58 5811.16 5677.40 133.76 0.00 conventional2015 Albany
    4 2015-11-29 1.28 51039.60 941.48 43838.39 75.78 6183.95 5986.26 197.69 0.00 conventional2015 Albany
    5 2015-11-22 1.26 55979.78 1184.27 48067.99 43.61 6683.91 6556.47 127.44 0.00 conventional2015 Albany
    6 2015-11-15 0.99 83453.76 1368.92 73672.72 93.26 8318.86 8196.81 122.05 0.00 conventional2015 Albany
    7 2015-11-08 0.98 109428.33 703.75 101815.36 80.00 6829.22 6266.85 562.37 0.00 conventional2015 Albany
    8 2015-11-01 1.02 99811.42 1022.15 87315.57 85.34 11388.36 11104.53 283.83 0.00 conventional2015 Albany
    9 2015-10-25 1.07 74338.76 842.40 64757.44 113.00 8625.92 8061.47 564.45 0.00 conventional2015 Albany
    10 2015-10-18 1.12 84843.44 924.86 75595.85 117.07 8205.66 7877.86 327.80 0.00 conventional2015 Albany
    11 2015-10-11 1.28 64489.17 1582.03 52677.92 105.32 10123.90 9866.27 257.63 0.00 conventional2015 Albany
    12 2015-10-04 1.31 61007.10 2268.32 49880.67 101.36 8756.75 8379.98 376.77 0.00 conventional2015 Albany
    13 2015-09-27 0.99 106803.39 1204.88 99409.21 154.84 6034.46 5888.87 145.59 0.00 conventional2015 Albany
    14 2015-09-20 1.33 69759.01 1028.03 59313.12 150.50 9267.36 8489.10 778.26 0.00 conventional2015 Albany
    15 2015-09-13 1.28 76111.27 985.73 65696.86 142.00 9286.68 8665.19 621.49 0.00 conventional2015 Albany
    16 2015-09-06 1.11 99172.96 879.45 90062.62 240.79 7990.10 7762.87 227.23 0.00 conventional2015 Albany
    17 2015-08-30 1.07 105693.84 689.01 94362.67 335.43 10306.73 10218.93 87.80 0.00 conventional2015 Albany
    18 2015-08-23 1.34 79992.09 733.16 67933.79 444.78 10880.36 10745.79 134.57 0.00 conventional2015 Albany
    19 2015-08-16 1.33 80043.78 539.65 68666.01 394.90 10443.22 10297.68 145.54 0.00 conventional2015 Albany
    20 2015-08-09 1.12 111140.93 584.63 100961.46 368.95 9225.89 9116.34 109.55 0.00 conventional2015 Albany
    21 2015-08-02 1.45 75133.10 509.94 62035.06 741.08 11847.02 11768.52 78.50 0.00 conventional2015 Albany
    22 2015-07-26 1.11 106757.10 648.75 91949.05 966.61 13192.69 13061.53 131.16 0.00 conventional2015 Albany
    23 2015-07-19 1.26 96617.00 1042.10 82049.40 2238.02 11287.48 11103.49 183.99 0.00 conventional2015 Albany
    24 2015-07-12 1.05 124055.31 672.25 94693.52 4257.64 24431.90 24290.08 108.49 33.33 conventional2015 Albany
    25 2015-07-05 1.35 109252.12 869.45 72600.55 5883.16 29898.96 29663.19 235.77 0.00 conventional2015 Albany
    26 2015-06-28 1.37 89534.81 664.23 57545.79 4662.71 26662.08 26311.76 350.32 0.00 conventional2015 Albany
    27 2015-06-21 1.27 104849.39 804.01 76688.55 5481.18 21875.65 21662.00 213.65 0.00 conventional2015 Albany
    28 2015-06-14 1.32 89631.30 850.58 55400.94 4377.19 29002.59 28343.14 659.45 0.00 conventional2015 Albany
    29 2015-06-07 1.07 122743.06 656.71 99220.82 90.32 22775.21 22314.99 460.22 0.00 conventional2015 Albany
    ..........................................
    6 2018-02-11 1.56 1317000.47 98465.26 270798.27 1839.80 945638.02 768242.42 177144.00 251.60 organic 2018 TotalUS
    7 2018-02-04 1.53 1384683.41 117922.52 287724.61 1703.52 977084.84 774695.74 201878.69 510.41 organic 2018 TotalUS
    8 2018-01-28 1.61 1336979.09 118616.17 280080.34 1270.61 936859.49 796104.27 140652.84 102.38 organic 2018 TotalUS
    9 2018-01-21 1.63 1283987.65 108705.28 259172.13 1490.02 914409.26 710654.40 203526.59 228.27 organic 2018 TotalUS
    10 2018-01-14 1.59 1476651.08 145680.62 323669.83 1580.01 1005593.78 858772.69 146808.97 12.12 organic 2018 TotalUS
    11 2018-01-07 1.51 1517332.70 129541.43 296490.29 1289.07 1089861.24 915452.78 174381.57 26.89 organic 2018 TotalUS
    0 2018-03-25 1.60 271723.08 26996.28 77861.39 117.56 166747.85 87108.00 79495.39 144.46 organic 2018 West
    1 2018-03-18 1.73 210067.47 33437.98 47165.54 110.40 129353.55 73163.12 56020.24 170.19 organic 2018 West
    2 2018-03-11 1.63 264691.87 27566.25 60383.57 276.42 176465.63 107174.93 69290.70 0.00 organic 2018 West
    3 2018-03-04 1.46 347373.17 25990.60 71213.19 79.01 250090.37 85835.17 164087.33 167.87 organic 2018 West
    4 2018-02-25 1.49 301985.61 34200.18 49139.34 85.58 218560.51 99989.62 118314.77 256.12 organic 2018 West
    5 2018-02-18 1.64 224798.60 30149.00 38800.64 123.13 155725.83 120428.13 35257.73 39.97 organic 2018 West
    6 2018-02-11 1.47 275248.53 24732.55 61713.53 243.00 188559.45 88497.05 99810.80 251.60 organic 2018 West
    7 2018-02-04 1.41 283378.47 22474.66 55360.49 133.41 205409.91 70232.59 134666.91 510.41 organic 2018 West
    8 2018-01-28 1.80 185974.53 22918.40 33051.14 93.52 129911.47 77822.23 51986.86 102.38 organic 2018 West
    9 2018-01-21 1.83 189317.99 27049.44 33561.32 439.47 128267.76 76091.99 51947.50 228.27 organic 2018 West
    10 2018-01-14 1.82 207999.67 33869.12 47435.14 433.52 126261.89 89115.78 37133.99 12.12 organic 2018 West
    11 2018-01-07 1.48 297190.60 34734.97 62967.74 157.77 199330.12 103761.55 95544.39 24.18 organic 2018 West
    0 2018-03-25 1.62 15303.40 2325.30 2171.66 0.00 10806.44 10569.80 236.64 0.00 organic 2018 WestTexNewMexico
    1 2018-03-18 1.56 15896.38 2055.35 1499.55 0.00 12341.48 12114.81 226.67 0.00 organic 2018 WestTexNewMexico
    2 2018-03-11 1.56 22128.42 2162.67 3194.25 8.93 16762.57 16510.32 252.25 0.00 organic 2018 WestTexNewMexico
    3 2018-03-04 1.54 17393.30 1832.24 1905.57 0.00 13655.49 13401.93 253.56 0.00 organic 2018 WestTexNewMexico
    4 2018-02-25 1.57 18421.24 1974.26 2482.65 0.00 13964.33 13698.27 266.06 0.00 organic 2018 WestTexNewMexico
    5 2018-02-18 1.56 17597.12 1892.05 1928.36 0.00 13776.71 13553.53 223.18 0.00 organic 2018 WestTexNewMexico
    6 2018-02-11 1.57 15986.17 1924.28 1368.32 0.00 12693.57 12437.35 256.22 0.00 organic 2018 WestTexNewMexico
    7 2018-02-04 1.63 17074.83 2046.96 1529.20 0.00 13498.67 13066.82 431.85 0.00 organic 2018 WestTexNewMexico
    8 2018-01-28 1.71 13888.04 1191.70 3431.50 0.00 9264.84 8940.04 324.80 0.00 organic 2018 WestTexNewMexico
    9 2018-01-21 1.87 13766.76 1191.92 2452.79 727.94 9394.11 9351.80 42.31 0.00 organic 2018 WestTexNewMexico
    10 2018-01-14 1.93 16205.22 1527.63 2981.04 727.01 10969.54 10919.54 50.00 0.00 organic 2018 WestTexNewMexico
    11 2018-01-07 1.62 17489.58 2894.77 2356.13 224.53 12014.15 11988.14 26.01 0.00 organic 2018 WestTexNewMexico
    str(avocado)
    
    
    'data.frame':	18249 obs. of  14 variables:
     $ X           : int  0 1 2 3 4 5 6 7 8 9 ...
     $ Date        : Factor w/ 169 levels "2015-01-04","2015-01-11",..: 52 51 50 49 48 47 46 45 44 43 ...
     $ AveragePrice: num  1.33 1.35 0.93 1.08 1.28 1.26 0.99 0.98 1.02 1.07 ...
     $ Total.Volume: num  64237 54877 118220 78992 51040 ...
     $ X4046       : num  1037 674 795 1132 941 ...
     $ X4225       : num  54455 44639 109150 71976 43838 ...
     $ X4770       : num  48.2 58.3 130.5 72.6 75.8 ...
     $ Total.Bags  : num  8697 9506 8145 5811 6184 ...
     $ Small.Bags  : num  8604 9408 8042 5677 5986 ...
     $ Large.Bags  : num  93.2 97.5 103.1 133.8 197.7 ...
     $ XLarge.Bags : num  0 0 0 0 0 0 0 0 0 0 ...
     $ type        : Factor w/ 2 levels "conventional",..: 1 1 1 1 1 1 1 1 1 1 ...
     $ year        : int  2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 ...
     $ region      : Factor w/ 54 levels "Albany","Atlanta",..: 1 1 1 1 1 1 1 1 1 1 ...
    
    
    (x_avg = avocado %>% group_by(region) %>% summarise(V_avg =mean(Total.Volume),P_avg=mean(AveragePrice)))
    
    
    regionV_avgP_avg
    Albany 47537.87 1.561036
    Atlanta 262145.32 1.337959
    BaltimoreWashington 398561.89 1.534231
    Boise 42642.57 1.348136
    Boston 287792.85 1.530888
    BuffaloRochester 67936.30 1.516834
    California 3044324.42 1.395325
    Charlotte 105193.92 1.606036
    Chicago 395569.05 1.556775
    CincinnatiDayton 131721.92 1.209201
    Columbus 88737.76 1.252781
    DallasFtWorth 616625.11 1.085592
    Denver 410954.25 1.218580
    Detroit 187640.29 1.276095
    GrandRapids 89383.83 1.505000
    GreatLakes 1744504.58 1.338550
    HarrisburgScranton 123694.85 1.513284
    HartfordSpringfield 149912.83 1.818639
    Houston 601088.37 1.047929
    Indianapolis 89536.66 1.313994
    Jacksonville 85177.53 1.510947
    LasVegas 160878.42 1.380917
    LosAngeles 1502652.51 1.216006
    Louisville 47624.27 1.286686
    MiamiFtLauderdale 288974.04 1.428491
    Midsouth 1503992.18 1.404763
    Nashville 105361.21 1.212101
    NewOrleansMobile 135192.71 1.304793
    NewYork 712231.15 1.727574
    Northeast 2110298.55 1.601923
    NorthernNewEngland 211635.78 1.477396
    Orlando 173552.38 1.506213
    Philadelphia 212540.82 1.632130
    PhoenixTucson 578826.37 1.224438
    Pittsburgh 55640.08 1.364320
    Plains 920676.12 1.436509
    Portland 327077.55 1.317722
    RaleighGreensboro 142611.63 1.555118
    RichmondNorfolk 124943.35 1.291331
    Roanoke 74088.79 1.247929
    Sacramento 222377.95 1.621568
    SanDiego 265656.57 1.398166
    SanFrancisco 401864.47 1.804201
    Seattle 323118.87 1.442574
    SouthCarolina 179744.89 1.403284
    SouthCentral 2991951.54 1.101243
    Southeast 1820231.98 1.398018
    Spokane 46051.11 1.445592
    StLouis 94890.04 1.430621
    Syracuse 32374.76 1.520325
    Tampa 195279.70 1.408846
    TotalUS 17351302.31 1.319024
    West 3215322.95 1.272219
    WestTexNewMexico 431408.48 1.261701
    
    (x_avg = avocado %>% group_by(region,year,type) %>% summarise(V_avg =mean(Total.Volume),P_avg=mean(AveragePrice)))
    
    
    regionyeartypeV_avgP_avg
    Albany 2015 conventional 76208.734 1.1719231
    Albany 2015 organic 1289.274 1.9055769
    Albany 2016 conventional 99453.155 1.3457692
    Albany 2016 organic 1784.068 1.7221154
    Albany 2017 conventional 95778.543 1.5264151
    Albany 2017 organic 2930.547 1.7492453
    Albany 2018 conventional 124160.870 1.3433333
    Albany 2018 organic 4337.977 1.5283333
    Atlanta 2015 conventional 440346.444 1.0523077
    Atlanta 2015 organic 6416.981 1.7088462
    Atlanta 2016 conventional 533746.336 0.9728846
    Atlanta 2016 organic 11001.324 1.4553846
    Atlanta 2017 conventional 527794.842 1.1924528
    Atlanta 2017 organic 15886.667 1.6650943
    Atlanta 2018 conventional 669620.026 1.0100000
    Atlanta 2018 organic 16331.845 1.5675000
    BaltimoreWashington2015 conventional 768141.489 1.1680769
    BaltimoreWashington2015 organic 13504.271 1.5696154
    BaltimoreWashington2016 conventional 768130.302 1.3565385
    BaltimoreWashington2016 organic 18288.973 1.8186538
    BaltimoreWashington2017 conventional 741746.089 1.5147170
    BaltimoreWashington2017 organic 32133.807 1.8441509
    BaltimoreWashington2018 conventional 962241.631 1.3008333
    BaltimoreWashington2018 organic 51000.286 1.4558333
    Boise 2015 conventional 70885.753 1.0540385
    Boise 2015 organic 1890.350 1.6934615
    Boise 2016 conventional 86871.986 0.8782692
    Boise 2016 organic 2618.582 1.4055769
    Boise 2017 conventional 87060.044 1.2681132
    Boise 2017 organic 2761.867 1.7171698
    ...............
    Tampa 2016 conventional 412223.563 1.0982692
    Tampa 2016 organic 4713.925 1.4307692
    Tampa 2017 conventional 382659.561 1.4139623
    Tampa 2017 organic 5078.875 1.8247170
    Tampa 2018 conventional 545088.634 1.2091667
    Tampa 2018 organic 8415.949 1.4525000
    TotalUS 2015 conventional 31224729.152 1.0125000
    TotalUS 2015 organic 645563.567 1.5023077
    TotalUS 2016 conventional 34043449.788 1.0467308
    TotalUS 2016 organic 940379.881 1.4803846
    TotalUS 2017 conventional 33995658.136 1.2216981
    TotalUS 2017 organic 1187239.286 1.6515094
    TotalUS 2018 conventional 42125533.352 1.0600000
    TotalUS 2018 organic 1510487.833 1.5541667
    West 2015 conventional 5655313.570 0.9400000
    West 2015 organic 203731.038 1.5355769
    West 2016 conventional 6404891.888 0.9157692
    West 2016 organic 221595.324 1.4459615
    West 2017 conventional 6279482.459 1.0983019
    West 2017 organic 230978.222 1.6816981
    West 2018 conventional 7451444.618 0.9808333
    West 2018 organic 254979.133 1.6133333
    WestTexNewMexico2015 conventional 789495.137 0.7715385
    WestTexNewMexico2015 organic 9220.608 1.7566667
    WestTexNewMexico2016 conventional 824285.770 0.8465385
    WestTexNewMexico2016 organic 18164.838 1.6467308
    WestTexNewMexico2017 conventional 876801.092 0.9035849
    WestTexNewMexico2017 organic 18022.184 1.6743137
    WestTexNewMexico2018 conventional 966639.193 0.8575000
    WestTexNewMexico2018 organic 16762.538 1.6450000
    
    library(ggplot2)
    x_avg%>% filter(region!="TotalUS")%>% ggplot(aes(year,V_avg,col=type))+geom_line() + facet_wrap(~region)
    
    

    output_43_0

    arrange(x_avg,desc(V_avg))
    
    
    regionyeartypeV_avgP_avg
    TotalUS 2018 conventional42125533 1.0600000
    TotalUS 2016 conventional34043450 1.0467308
    TotalUS 2017 conventional33995658 1.2216981
    TotalUS 2015 conventional31224729 1.0125000
    SouthCentral2018 conventional 7465557 0.8058333
    West 2018 conventional 7451445 0.9808333
    California 2018 conventional 6786962 1.0791667
    West 2016 conventional 6404892 0.9157692
    West 2017 conventional 6279482 1.0983019
    California 2016 conventional 6105539 1.0461538
    SouthCentral2017 conventional 6005999 0.9509434
    California 2017 conventional 5834479 1.2530189
    SouthCentral2016 conventional 5730807 0.8582692
    California 2015 conventional 5681498 1.0203846
    West 2015 conventional 5655314 0.9400000
    SouthCentral2015 conventional 5524126 0.8121154
    Northeast 2018 conventional 5187623 1.3041667
    Southeast 2018 conventional 4914055 1.1466667
    GreatLakes 2018 conventional 4209386 1.1466667
    Northeast 2016 conventional 4104209 1.3194231
    Northeast 2017 conventional 4016741 1.5052830
    Northeast 2015 conventional 3855715 1.2148077
    Midsouth 2018 conventional 3843181 1.1558333
    Southeast 2016 conventional 3752284 1.0711538
    Southeast 2017 conventional 3634714 1.3341509
    GreatLakes 2017 conventional 3404260 1.3313208
    GreatLakes 2016 conventional 3295253 1.1419231
    GreatLakes 2015 conventional 3178391 1.0776923
    LosAngeles 2018 conventional 3068403 1.0225000
    Southeast 2015 conventional 3047529 1.0842308
    ...............
    Spokane 2017 organic 3766.168 1.997547
    Indianapolis 2016 organic 3645.516 1.485000
    HartfordSpringfield2015 organic 3494.988 2.252692
    Jacksonville 2016 organic 3484.101 1.675577
    Jacksonville 2017 organic 3411.278 1.946604
    NewOrleansMobile 2016 organic 3400.705 1.473077
    Spokane 2015 organic 3360.299 1.705385
    Spokane 2016 organic 3025.019 1.639615
    Orlando 2015 organic 3016.677 1.866154
    HarrisburgScranton 2015 organic 2933.000 1.797500
    Albany 2017 organic 2930.547 1.749245
    BuffaloRochester 2015 organic 2904.093 1.685769
    Boise 2017 organic 2761.867 1.717170
    Louisville 2016 organic 2653.020 1.366346
    Boise 2018 organic 2650.321 1.805000
    Boise 2016 organic 2618.582 1.405577
    NewOrleansMobile 2015 organic 2492.463 1.550962
    Syracuse 2016 organic 2098.298 1.634808
    Jacksonville 2015 organic 2096.534 1.885192
    Indianapolis 2015 organic 2047.050 1.581346
    GrandRapids 2016 organic 2005.151 1.724615
    Tampa 2015 organic 1941.753 1.626538
    Boise 2015 organic 1890.350 1.693462
    MiamiFtLauderdale 2015 organic 1797.681 1.625962
    Albany 2016 organic 1784.068 1.722115
    Louisville 2015 organic 1766.438 1.545577
    Pittsburgh 2015 organic 1748.357 1.551731
    GrandRapids 2015 organic 1593.975 1.745769
    Syracuse 2015 organic 1387.693 1.721731
    Albany 2015 organic 1289.274 1.905577
    #x=1,y=2를 서로 교환하려고 한다.
    x=1
    y=2
    temp=y
    y=x
    x=temp
    x
    y
    

    2

    1

    
    #연산의 결과가 NaN으로 나오는 연산 
    X=0
    y=0
    x/y
    
    x=Inf
    y=Inf
    x/y
    

    Inf

    NaN

    
    #수학적인 표현인 1<x<5를 R에서 표현으로 작성하라
    X=3
    1<X & X<5
    

    TRUE

    
    #!(x%%3==0&x%%4==0)과 같은 의미이면서 or연산자를 활용한 표현식으로 고쳐 써라
    
    x%%3!=0|x%%4!=0 
    

    <NA>

    
    #x=c(1:5)인 벡터가 있다. 이 벡터에 c(6:10)인 벡터를 추가하라
    x=c(1:5)
    x=c(x,c(6:10))
    x
    

    <ol class=list-inline> <li>1</li> <li>2</li> <li>3</li> <li>4</li> <li>5</li> <li>6</li> <li>7</li> <li>8</li> <li>9</li> <li>10</li> </ol>

    
    #x=c(1:10)인 벡터에서 짝수 번째 요소만 남긴 x를 만들어라
    x=c(1:10)
    x=x[seq(2,length(x),2)]
    x
    

    <ol class=list-inline> <li>2</li> <li>4</li> <li>6</li> <li>8</li> <li>10</li> </ol>

    
    #x=c(1:10)인 벡터에서 홀수 번째 요소만 남긴 x를 만들어라
    x=c(1:10)
    x=x[seq(1,length(x),2)]
    x
    
    

    <ol class=list-inline> <li>1</li> <li>3</li> <li>5</li> <li>7</li> <li>9</li> </ol>

    
    #Titanic 데이터는 4차원 배열 값을 가지고 있다. plot(Titanic)을 수행하여 생존율이 가장 높은 그룹을 유추하라 
    plot(Titanic)
    Titanic
    
    
    , , Age = Child, Survived = No
    
          Sex
    Class  Male Female
      1st     0      0
      2nd     0      0
      3rd    35     17
      Crew    0      0
    
    , , Age = Adult, Survived = No
    
          Sex
    Class  Male Female
      1st   118      4
      2nd   154     13
      3rd   387     89
      Crew  670      3
    
    , , Age = Child, Survived = Yes
    
          Sex
    Class  Male Female
      1st     5      1
      2nd    11     13
      3rd    13     14
      Crew    0      0
    
    , , Age = Adult, Survived = Yes
    
          Sex
    Class  Male Female
      1st    57    140
      2nd    14     80
      3rd    75     76
      Crew  192     20
    

    output_52_1

    
    #room=30을 추가하라 . 
    patients = data.frame(name=c("철수","춘향","길동"),age=c(22,20,25),gender=factor(c("M","F","M")),blood.type=factor(c("A","O","B")))
    
    patients
    
    nameagegenderblood.type
    철수22 M A
    춘향20 F O
    길동25 M B
    
    no.patients=data.frame(day=c(1:6),no=c(50,60,55,52,65,58))
    no.patients
    
    dayno
    1 50
    2 60
    3 55
    4 52
    5 65
    6 58
    
    listPatients = list(patients=patients,no.patients=no.patients)
    listPatients
    
    
    $patients
    nameagegenderblood.type
    철수22 M A
    춘향20 F O
    길동25 M B
    $no.patients
    dayno
    1 50
    2 60
    3 55
    4 52
    5 65
    6 58
    
    listPatients$room=30
    listPatients
    
    
    $patients
    nameagegenderblood.type
    철수22 M A
    춘향20 F O
    길동25 M B
    $no.patients
    dayno
    1 50
    2 60
    3 55
    4 52
    5 65
    6 58
    $room
    30
    
    # 리스트 요소는 '요소명=NULL'형태로 제거할 수 있다. listPatients에 추가한 room을 다시 제거하라 
    listPatients$room =NULL
    listPatients
    
    
    $patients
    nameagegenderblood.type
    철수22 M A
    춘향20 F O
    길동25 M B
    $no.patients
    dayno
    1 50
    2 60
    3 55
    4 52
    5 65
    6 58
    
    
    print(paste(x,y))
    print(paste(x,y,sep="")) #빈칸 제거
    print(paste0(x,y))#공백 제거
    
    
    [1] "안녕 하세요"
    [1] "안녕하세요"
    [1] "안녕하세요"
    
    
    #airquality 데이터는 어느 도시의 공기 질을 나타낸 데이터인가?New York
    airquality
    
    
    OzoneSolar.RWindTempMonthDay
    41 190 7.467 5 1
    36 118 8.072 5 2
    12 149 12.674 5 3
    18 313 11.562 5 4
    NA NA 14.356 5 5
    28 NA 14.966 5 6
    23 299 8.665 5 7
    19 99 13.859 5 8
    8 19 20.161 5 9
    NA 194 8.669 5 10
    7 NA 6.974 5 11
    16 256 9.769 5 12
    11 290 9.266 5 13
    14 274 10.968 5 14
    18 65 13.258 5 15
    14 334 11.564 5 16
    34 307 12.066 5 17
    6 78 18.457 5 18
    30 322 11.568 5 19
    11 44 9.762 5 20
    1 8 9.759 5 21
    11 320 16.673 5 22
    4 25 9.761 5 23
    32 92 12.061 5 24
    NA 66 16.657 5 25
    NA 266 14.958 5 26
    NA NA 8.057 5 27
    23 13 12.067 5 28
    45 252 14.981 5 29
    115 223 5.779 5 30
    ..................
    96 167 6.991 9 1
    78 197 5.192 9 2
    73 183 2.893 9 3
    91 189 4.693 9 4
    47 95 7.487 9 5
    32 92 15.584 9 6
    20 252 10.980 9 7
    23 220 10.378 9 8
    21 230 10.975 9 9
    24 259 9.773 9 10
    44 236 14.981 9 11
    21 259 15.576 9 12
    28 238 6.377 9 13
    9 24 10.971 9 14
    13 112 11.571 9 15
    46 237 6.978 9 16
    18 224 13.867 9 17
    13 27 10.376 9 18
    24 238 10.368 9 19
    16 201 8.082 9 20
    13 238 12.664 9 21
    23 14 9.271 9 22
    36 139 10.381 9 23
    7 49 10.369 9 24
    14 20 16.663 9 25
    30 193 6.970 9 26
    NA 145 13.277 9 27
    14 191 14.375 9 28
    18 131 8.076 9 29
    20 223 11.568 9 30
    
    #평균 오존농도(Ozone)를 구하시오.
    mean(airquality$Ozone, na.rm = T) # 정답
    

    42.1293103448276

    
    #airquality 데이터에서 바람이 가장 세게 분 날짜는 언제인가?
    maxWind<-max(airquality$Wind)
    maxWind
    

    20.7

    
    subset(airquality,Wind==max(airquality$Wind),c('Month','Day'))
    
    
    MonthDay
    486 17
    
    #8월20일의 측정치를 조회하시오.
    
    airquality[airquality$Month == 8 & airquality$Day == 20, ]
    
    
    OzoneSolar.RWindTempMonthDay
    11244 190 10.378 8 20
    
    #온도가 가장 높은 날의 측정치를 조회하시오.
    airquality [airquality$Temp == max(airquality$Temp), ]
    
    
    OzoneSolar.RWindTempMonthDay
    12076 2039.797 8 28
    
    #9월 평균온도와 바람의세기의 표준편차를 구하시오.
    
    mean(airquality[airquality$Month == 9, ]$Temp)
    sd(airquality[airquality$Month == 9, ]$Wind)
    
    #2
    a <- subset(airquality, subset = (Month == 9))
    a$Temp
    mean(a$Temp, na.rm = T)
    sd(a$Wind)
    

    76.9

    3.46125351022848

    <ol class=list-inline> <li>91</li> <li>92</li> <li>93</li> <li>93</li> <li>87</li> <li>84</li> <li>80</li> <li>78</li> <li>75</li> <li>73</li> <li>81</li> <li>76</li> <li>77</li> <li>71</li> <li>71</li> <li>78</li> <li>67</li> <li>76</li> <li>68</li> <li>82</li> <li>64</li> <li>71</li> <li>81</li> <li>69</li> <li>63</li> <li>70</li> <li>77</li> <li>75</li> <li>76</li> <li>68</li> </ol>

    76.9

    3.46125351022848

    
    #1. 1부터 10까지, 0.5씩 증가시킨 값들로 구성된 벡터를 변수에 저장하시오.
    
    a <-seq(1, 10, .5)
    
    a
    

    <ol class=list-inline> <li>1</li> <li>1.5</li> <li>2</li> <li>2.5</li> <li>3</li> <li>3.5</li> <li>4</li> <li>4.5</li> <li>5</li> <li>5.5</li> <li>6</li> <li>6.5</li> <li>7</li> <li>7.5</li> <li>8</li> <li>8.5</li> <li>9</li> <li>9.5</li> <li>10</li> </ol>

    
    #2. 벡터의 평균, 표준편차를 구하시오
    mean(a)
    sd(a)
    

    5.5

    2.81365716935569

    
    #사용자정의함수로 소수 출력하는 프로그램 
    #정수를 입력받아 소수이면 True를,소수가 아니면 False를 반환하는 함수를 작성하라 .
    #1부터 10까지 수 중에서 소수를 출력하는 프로그램을 만들어라 
    
    pn <-function(i){
      check=0
      for (j in 1:i) {
        if(i%%j==0){
          check = check+1
        }
      }
      if(check==2){
        return(T)
      }
      else{
        return(F)
      }
    }
    
    pn(10) #10은 소수가 아님,FALSE출력
    
    pn(5) # 5는 소수가 맞음,TRUE 출력
    
    

    FALSE

    TRUE

    
    #약수란 나누어 떨이지는 수를 의미한다. 이 때 24의 약수를 구하시오.
    
    
    for (i in 1:24){
      if(24%%i==0){
        print(i)
      }
    }
    
    [1] 1
    [1] 2
    [1] 3
    [1] 4
    [1] 6
    [1] 8
    [1] 12
    [1] 24
    
    
    #10!를 출력하시오(단, factorial() 함수를 이용하지 않는다.)
    
    mul <- 1
    for (i in 1:10){
      mul <- mul*i
    }
    mul
    

    3628800